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Joint sound model generation techniques are described. In
one or more implementations, a plurality of models of sound
data received from a plurality of different sound scenes are
jointly generated. The joint generating includes learning
information as part of generating a first said model of sound
data from a first one of the sound scenes and sharing the
learned information for use in generating a second one of the
models of sound data from a second one of the sound scenes.

ABSTRACT

20 Claims, 7 Drawing Sheets

Model Generation System 120

Transform Module

Time/Frequency
204(1)

Time/Frequenc
duency God)
204(2)

Transform Modul
204(2

Time/Frequency
Transform Module

204(N)

Y

Model Generation
Module 2061

Madel Generation

Module 208(2

Model Generation

Module 206(N

4 4

Model
208(1

Model
208(2,

4

Model

C'"] 208(N)




U.S. Patent Apr. 19,2016 Sheet 1 of 7 US 9,318,106 B2

100 \

Sound Capture Device 104
CSound Capture Module m)

( SoundData108 )

( Computing Device 102 h
Sound Processing Module 112
Decomposition Module 116
( Model Generation System 120 )

( Source Separated Sound Data 118 )

\\

Fig. 1



U.S.

Patent

Apr. 19,2016

Sheet 2 of 7

US 9,318,106 B2

7

Model Generation System 120

\\

- ™ - ™) - ™)
Time/Frequency Time/Frequency Time/Frequency
Transform Module Transform Module C’ M ‘j Transform Module
204(1) 204(2) 204(N)

Y + R e + \ 'Y + ™
Model Generation Model Generation Model Generation
Module 206(1) Module 206(2) [‘ . ,3 Module 208(N)

\\ ) \\ ) . _J
Model Model C“ ;_-) Model
208(1) 208(2) 208(N)




U.S. Patent Apr. 19,2016 Sheet 3 of 7 US 9,318,106 B2

300 —\

304 302
R h

Freguency

i s L L i

Time

Walahts
306 j §



U.S. Patent Apr. 19,2016 Sheet 4 of 7 US 9,318,106 B2

400 \

( Sound Data 10 )’

@ N

Sound Processing Module 112
1

1

Decomposition Module

( Model 208(2) )

7/
/
/

C Source Separated Sound Data 118 )/




U.S. Patent Apr. 19,2016 Sheet 5 of 7 US 9,318,106 B2

500 —\

s 502 I 504




U.S. Patent Apr. 19,2016 Sheet 6 of 7 US 9,318,106 B2

600 —\

~
602
Receive sound data from a plurality of different sound scenes
e ™

604
Jointly generate a plurality of models of sound data
received from a plurality of different sound scenes

- A
606

Learn information as part of the generating of a first model of

sound data from a first sound scene
\. y

!

4 N
608

Share the learned information for use in generating a second

model of sound data from a second sound scene
\_ y

!

610
Process sound data using at least one of the
jointly generated plurality of models




U.S. Patent Apr. 19,2016 Sheet 7 of 7
700 \‘
Platform 716
[ Resources )
NN 7
N
N
N /
-
A
104 1 (B ) |/
Debut  LifeCycle
- - g = ~ ~ -
-~ ™~ -
(/
Computmg Device 702
, Processing Computer-readable
System 704 Media 706
Hardware Memory/
Elements 710 Storage 712
[ I/O 1 Sound Processing |
Interfaces 708 Module 112
\\

Feg.

7

US 9,318,106 B2




US 9,318,106 B2

1
JOINT SOUND MODEL GENERATION
TECHNIQUES

BACKGROUND

Sound decomposition may be leveraged to support a wide
range of functionality. For example, sound data, such as that
of'a movie or of a recording of a song, is often captured in a
noisy environment and may include both desirable and unde-
sirable parts. The sound data in a movie, for instance, may
include dialog, which is desirable, but may also include the
unintended ringing of a cell phone. Thus, it may be desirable
to decompose the sound data such that the dialog may be
separated from the cell phone.

Conventional techniques that are employed to perform this
decomposition typically rely on models learned from actual
sound sources. Further, these conventional techniques are
typically performed independently and therefore limited by
the sound data itself'in the generation of the model. Therefore,
complications could be encountered in situations in which
sound data used to generate the model also contains noise or
other artifacts.

SUMMARY

Joint sound model generation techniques are described. In
one or more implementations, a plurality of models of sound
data received from a plurality of different sound scenes are
jointly generated. The joint generation includes learning
information as part of generating a first model of sound data
from a first one of the sound scenes and sharing the learned
information for use in generating a second one of the models
of sound data from a second one of the sound scenes.

In one or more implementations, a system includes one or
more modules implemented at least partially in hardware and
configured to jointly generate a plurality of individual models
for respective ones of a plurality of sound data by sharing
information during the generating to utilize a penalty that
encourages spectral components of the respective models to
have similar values. The system also includes at least one
module implemented at least partially in hardware and con-
figured to process sound data using at least one of the jointly
generated plurality of models.

In one or more implementations, one or more computer
readable storage media comprise instructions stored thereon
that, responsive to execution by a computing device, causes
the computing device to perform operations. The operations
include jointly generating a plurality of individual models for
respective ones of a plurality of sound data by sharing infor-
mation during the generation to utilize a penalty that encour-
ages spectral components of the respective said models to
have similar values. The operations also include decompos-
ing sound data using at least one of the jointly generated
plurality of models.

This Summary introduces a selection of concepts in a sim-
plified form that are further described below in the Detailed
Description. As such, this Summary is not intended to iden-
tify essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
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in different instances in the description and the figures may
indicate similar or identical items. Entities represented in the
figures may be indicative of one or more entities and thus
reference may be made interchangeably to single or plural
forms of the entities in the discussion.

FIG. 1 is an illustration of an environment in an example
implementation that is operable to employ sound processing
techniques as described herein.

FIG. 2 depicts a system in an example implementation in
which a model generation system is illustrated in greater
detail.

FIG. 3 depicts an example of spectrograms.

FIG. 4 depicts a system in an example implementation in
which sound data is decomposed through use of a model as
generated in relation to FIG. 2.

FIG. 5 depicts an example of learned basis vectors.

FIG. 6 is a flow diagram depicting a procedure in an
example implementation in which a joint sound generation
technique is described.

FIG. 7 illustrates an example system including various
components of an example device that can be implemented as
any type of computing device as described and/or utilize with
reference to FIGS. 1-6 to implement embodiments of the
techniques described herein.

DETAILED DESCRIPTION

Overview

Conventional sound decomposition techniques typically
relied on models formed through observations of sound
sources that are to be decomposed from the sound data. How-
ever, conventional techniques typically generated these mod-
els independently, e.g., to generate separate models for each
sound source, and thus could be limited by noise and other
artifacts included in sound data used in generating the model.

Model generation techniques are described herein that may
leverage knowledge of other models. In one or more imple-
mentations, a plurality of audio models (e.g., dictionaries)
may be generated for each of a plurality of different sound
sources. For example, the models may be generated for dif-
ferent sound sources that have a similar type, such as users,
noise, musical instruments, animals, and so on, to learn fre-
quency representations from a plurality of examples of each
source.

During this generation, techniques may be employed to
leverage knowledge gained as part of the generation of one
model with another model, such as to leverage knowledge
that the sources are similar. Thus, the generation of the mod-
els may be performed jointly by sharing knowledge. For
example, generation of a model from sound data that corre-
sponds to one sound source (e.g., a classic piano) may be
leveraged in the generation in the model from another similar
sound source, e.g., a modern piano. This may be performed in
a variety of ways, such as to share basis vectors that describe
spectral characteristics as part of the generation of both mod-
els. In this way, each of the models may be generated jointly
in a manner that may leverage similarity of the sound sources.
A variety of other examples are also contemplated, further
discussion of which may be found in relation to the following
sections.

In the following discussion, an example environment is
first described that may employ the techniques described
herein. Example procedures are then described which may be
performed in the example environment as well as other envi-
ronments. Consequently, performance of the example proce-
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dures is not limited to the example environment and the
example environment is not limited to performance of the
example procedures.

Example Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ sound
processing techniques described herein. Although the envi-
ronment 100 is described that is to be utilized in sound
decomposition, other environments are also contemplated
that may leverage a model of sound data that corresponds to
a sound source. The illustrated environment 100 includes a
computing device 102 and sound capture device 104, which
may be configured in a variety of ways.

The computing device 102, for instance, may be configured
as a desktop computer, a laptop computer, a mobile device
(e.g., assuming a handheld configuration such as a tablet or
mobile phone), and so forth. Thus, the computing device 102
may range from full resource devices with substantial
memory and processor resources (e.g., personal computers,
game consoles) to a low-resource device with limited
memory and/or processing resources (e.g., mobile devices).
Additionally, although a single computing device 102 is
shown, the computing device 102 may be representative of a
plurality of different devices, such as multiple servers utilized
by a business to perform operations “over the cloud” as fur-
ther described in relation to FIG. 7.

The sound capture device 104 may also be configured in a
variety of ways. Illustrated examples of one such configura-
tion involves a standalone device but other configurations are
also contemplated, such as part of a mobile phone, video
camera, tablet computer, part of a desktop microphone, array
microphone, and so on. Additionally, although the sound
capture device 104 is illustrated separately from the comput-
ing device 102, the sound capture device 104 may be config-
ured as part of the computing device 102, the sound capture
device 104 may be representative of a plurality of sound
capture devices, and so on.

The sound capture device 104 is illustrated as including a
sound capture module 106 that is representative of function-
ality to generate sound data 108. The sound capture device
104, for instance, may generate the sound data 108 as a
recording of a sound scene 110 having one or more sound
sources, which are illustrated as a user, a dog, and a cell phone
in FIG. 1. This sound data 108 may then be obtained by the
computing device 102 for processing.

The computing device 102 is illustrated as including a
sound processing module 112. The sound processing module
112 is representative of functionality to process the sound
data 108. Although illustrated as part of the computing device
102, functionality represented by the sound processing mod-
ule 112 may be further divided, such as to be performed “over
the cloud” by one or more servers that are accessible via a
network 114 connection, further discussion of which may be
found in relation to FIG. 7.

An example of functionality of the sound processing mod-
ule 112 is represented as a decomposition module 116. The
decomposition module 116 is representative of functionality
to decompose the sound data 108 according to a likely source
of respective parts of the sound data 108. As illustrated in the
audio scene 110 of FIG. 1, for instance, the decomposition
module 116 may be used to separate the sound data 108
according to different sources, such as to separate dialog from
the person in the sound scene 110 from ringing of a cell phone
and barking of the dog to form source separated sound data
118. This may be used to support a variety of different func-
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tionality, such as audio denoising, music transcription, music
remixing, audio-based forensics, source replacement, and so
on.

To perform this decomposition, the decomposition module
116 may employ a variety of different functionality. One
example of this functionality is illustrated as a model genera-
tion system 120. The model generation system 120 is repre-
sentative of functionality to generate models of respective
sound sources, such as users, noise, musical instruments, and
so on. Further discussion of functionality of the model gen-
eration system 120 may be found in the following description
of FIG. 2.

FIG. 2 depicts a system 200 in an example implementation
in which the model generation system 120 is illustrated in
greater detail. In this example, sound data is received by the
model generation system 120 from a variety of different
sound scenes 202(1), 202(2), . . ., 202(N). Each of the sound
scenes 202(1), 202(2), 202(N) are similar in this instance in
that at least one sound source is common to the scenes, e.g.,
speech of a particular person in this example. A variety of
other examples of similarity are also contemplated, such as
similarity of type of sound source, which may include speech,
musical instrument, type of noise such as a dog barking,
cellphone ringing, traffic noise, and other examples.

Sound data received from these scenes is then processed by
the model generation system 120. The model generation sys-
tem 120, for instance, may employ one or more techniques to
generate a representation of the sound data for each of the
sound sources. In the illustrated example, the model genera-
tion system 120 employs a respective time/frequency trans-
form module 204(1), 204(2), . . . , 204(N) to generate a
time/frequency representation of sound data from a respec-
tive one of the plurality of sound scenes 202(1)-202(N).

The time/frequency representations, for instance, may be
used to quantify the sound data such that a plurality of differ-
ent time/frequency bins are used to represent sound data at
respective time/frequency combinations, e.g., time “x” and
frequency “y.” Although a respective time/frequency trans-
form module is illustrated for each sound source, a variety of
other examples are also contemplated, including use of a
single time/frequency transform module or any other number
of module.

For example, the time/frequency transform modules 204
(1)-204(N) may be utilized to form one or more spectrograms
of a respective sound signal. A time-domain signal, for
instance, may be received and processed to produce a time-
frequency representation. Spectrograms may be generated in
avariety of ways, an example of which includes calculation as
magnitudes of short time Fourier transforms (STFT) of the
signals and so forth. Additionally, the spectrograms may
assume a variety of configurations, such as narrowband spec-
trograms although other instances are also contemplated.
Other representations are also contemplated, such as a time
domain representation, an original time domain signal, and so
on.

The model generation system 120 may then leverage a
plurality of model generation modules 206(1), 206(2), . . .,
206(N) which may be used to generate a model 208(1), 208
(2),...,208(N) for a respective one of the plurality of sound
sources. During this generation, knowledge learned as part of
the generation process may be shared to support joint learning
of the different models, which is illustrated through use of
arrows that are shown connecting the modules.

For example, the models 208(1)-208(N) may be generated
by respective model generation modules 206(1)-206(N)
through creation of a dictionary of spectral components that
represent general characteristics of sound data of a respective
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sound scene 202(1)-202(N), which may be generalized to
other unseen instances of the source. The model generation
modules 206(1)-206(N) may also estimate weights, which
represent characteristics of the specific instance of the excerpt
of data.

Dictionary learning refers to a process of approximately
factoring a matrix “X” into “W” and “H.” It is so named
because if the observations “x,” are stacked side-by-side into
a matrix “X=[x, . . . X,,],” then dictionary learning is used to
find a set of basis vectors “w,” (i.e., a “dictionary”) from
which the observations may be generated as follows:

X~ Z W

In an audio context, dictionary learning may be applied to
a time/frequency representation as described above to learn
the latent spectral features “w,” and corresponding activa-
tions over time. A variety of different techniques may be
utilized to factor a matrix “X” into factors “W” and “H,”
which include singular value decomposition (SVD), non-
negative matrix factorization, and so on.

Non-negative matrix factorization may be configured for
use in sound processing because sound spectrograms (also
referred to as simply spectrograms in the following discus-
sion) are effectively low rank non-negative matrices. There-
fore, these spectrograms may be used to compactly represent
sound data in a semantically meaningful way. A typical audio
spectrogram may be described using a few spectral patterns
and these spectral patterns may be interpreted as a dictionary
of spectral components.

As shown in the example 300 of FIG. 3, for instance,
non-negative matrix factorization may be applied to a spec-
trogram 302 of a sound clip of piano music. The sound clip
has five notes as can be seen in the spectrogram 302. The fifth
note is a repetition of the third note so there are four distinct
notes. When NMF is applied to the spectrogram 302 (with
K=4), four distinct spectral components 304 are learned.
Additionally, the weights 306 of these spectral components at
each time frame are learned. The attack and decay of each
note can be seen in the weights. Additionally, the repetition of
the third note can also be seen in the weights.

Each time frame of a spectrogram can thus be explained by
a linear combination of these spectral components. A typical
model is as follows:

K
Ve X Z By wes
k=1

where “v,” is the “t-th” frame of the spectrogram. The spec-
trogram is explained by “K” spectral components. The com-
ponent “w,” is the “k-th” component and “h,,” is the weight
of the “k-th” component at time “t.”” In matrix notation, this

relationship may be represented as:

VeWVH,

where the spectrogram “V,” is a “FxT” matrix. The dictionary
“W” is a “FxK” matrix in which each column is a spectral
component. The mixture weights may be expressed in a
“KxT” matrix “H” in which each row represents the weights
for a given component.

Given “V,” the estimation of “W” and “H” with the con-
straint that both matrices are non-negative, expresses the non-
negative matrix factorization (NMF) problem. This is useful
for discovering structure in spectrograms as shown in the
example 300 of FIG. 3.
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Non-negativity may play a role in this factorization to
discover spectral components that characterize the spectro-
gram. Since a spectrogram is by definition non-negative,
semantically meaningful spectral components are also non-
negative. As the spectrogram is modeled as a weighted sum of
spectral components, the estimated components may have
negative values without an explicit non-negativity constraint.
This may be observed in algorithms such as principle com-
ponent analysis (PCA). Given a spectrogram, the model that
is learned is therefore the dictionary of spectral components.
This dictionary may be used for representing the general
characteristics of the sound source and can be generalized to
other unseen instances of the source. The weights, on the
other hand, characterize the specific instance of data at hand.

In the example system 200 of FI1G. 2, the model generation
modules 206(1)-206(N) utilize multitask learning techniques
that are configured to generate the models 208(1)-208(N)
jointly from sound data from a plurality of different sound
scenes 202(1)-202(N). For instance, the model generation
modules 206(1)-206(N) may leverage sound data from one
source to improve an estimate of another source. Further, this
may be performed for sound data from similar sound sources
as described above, e.g., a same user, different types, and so
on. Accordingly, ‘“knowledge” gained by the respective
model generations modules 206(1)-206(N) may be leveraged
by sharing this knowledge to jointly generate the respective
models 208(1)-208(N) for sound sources having similarities
as described above.

For example, an objective function which is described as
follows may be solved:

L 1) e Oy
minimize Z DX W H@) +; Zk: 4 DWW
‘ :

where “D” is a measure of divergence between the matrices.
This problem may be solved using multiplicative updates
with an efficient Newton-Raphson inner loop whose com-
plexity is linear in the number of shared basis vectors. Other
techniques to find approximations (e.g., successively better
approximations) for the roots of a real-valued function are
also contemplated.

The models 208(1)-208(N) may be utilized as part of a
variety of different sound processing techniques. For
example, sound decomposition techniques using NMF-based
approaches as described above may employ training data
(e.g., a model) as part of the process. Accordingly, “cleanli-
ness” of the model may be desirable. Thus, a model learned
from multiple sound sources, jointly, as in the present tech-
niques may be able to recover clean sources from several
noisy recording.

In another example, multitask dictionary learning may also
be utilized to learn a correspondence between the models
(e.g., dictionaries) for the different sources. Thus, techniques
may leverage this correspondence to swap out the basis vec-
tors of one source for those of another, e.g., such as to allow
one singer’s voice to be morphed into another, to restore the
instruments in an old recording to modern quality, and so on.
An example of sound decomposition is described in relation
to the following figure.

FIG. 4 depicts a system 400 in an example implementation
in which sound data 108 is decomposed through use of a
model as generated in relation to FIG. 2. In applications such
as audio denoising, music transcription, music remixing, and
audio-based forensics, for example, a recording having sound
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data 108 may be decomposed into its respective sources. One
technique to perform such decomposition is based on nonne-
gative matrix factorization and related latent variable models
although other examples are also contemplated as described
above.

Sound data 108, for instance, may be received by a sound
processing module 112. As previously described, the sound
data 108 may originate from a variety of different sources,
such as speech from a user, barking of a dog, a ring of a cell
phone, and so on. In the illustrated example, the sound data
108 includes sound that includes speech of a user and the
ringing of a cellphone.

The sound data 108 is then processed by a decomposition
module 116 of the sound processing module 112. The decom-
position module 116 may include functionality to identify
components in the sound data 108, such as the spectral com-
ponents described above. This may include an estimation of a
likely contribution of each source to portions of the sound
data 108 based at least in part on the model 208(2). In this
way, the model 208(2) may be used to guide the sound decom-
position process. The decomposition module 116 may then
use this identified contribution to separate the sound data 108
based on labeling resulting from the analysis to generate the
source separated sound data 118.

In an implementation example, speech captured in a noisy
environment is sampled. This includes capturing first and
second recordings, each of which include speech from a
female speaker, although different sentences were spoken.
The speech in the first recording is mixed with a siren and the
speech in the second recording is mixed with the dialing of a
telephone.

Since the speaker is the same in the two recordings, the
value of “A,” was chosen to be relatively large to constrain the
shared speech basis vectors to be the same. The learned basis
vectors are shown in the example of FIG. 5, showing a siren
502 and the dialing of the telephone 504. As illustrated, the
techniques have identified pulse tones of the telephone (as
well as some noise that was in the background of that record-
ing) in the second mixture without use of training data what-
soever. Rather, the techniques instead leveraged the knowl-
edge that the second recording is to share at least some basis
vectors with the first recording.

The following table shows the separation quality in dB,
confirming the advantages provided by multitask dictionary
learning

SDR SIR SAR
Speech 1 1.9 4.5 6.6
Speech 2 5.0 10.2 7.0

Thus, the multitask dictionary learning techniques described
herein have achieved about 2 dB and 5 dB of speech enhance-
ment without use of training data of either source in this
example. A variety of other examples are also contemplated
without departing from the spirit and scope thereof.

Example Procedures

The following discussion describes joint sound model gen-
eration techniques that may be implemented utilizing the
previously described systems and devices. Aspects of each of
the procedures may be implemented in hardware, firmware,
or software, or a combination thereof. The procedures are
shown as a set of blocks that specify operations performed by
one or more devices and are not necessarily limited to the
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orders shown for performing the operations by the respective
blocks. In portions of the following discussion, reference will
be made to FIGS. 1-5.

FIG. 6 depicts a procedure 600 in an example implemen-
tation in which a model is generated from sound data jointly
in conjunction with the generation of at least one other model.
Sound data is received from a plurality of different audio
scenes (block 602). As shown in FIG. 2, for instance, sound
data may be received from a plurality of different sound
scenes, each of which may include one or more sound
sources. In the example of FIG. 2, sound data from each ofthe
sound scenes is similar in that it includes sound data from a
sound source that is common to each of the sound scenes.
Other examples are also contemplated, such as similarity
based on type and so on as well as examples not involving
similarity.

A plurality of models of sound data are jointly generated
from the plurality of different sound scenes (block 604). A
variety of different techniques may be employed to perform
this joint generation. For example, information may be
learned as part of the generating of a first model of sound data
form a first sound scene (block 606), which may include basis
vectors or other information as described above.

The learned information is shared for use in generating a
second model of sound data from a second sound scene (block
608). For example, the shared information may be utilized as
part of a penalty that encourages spectral components of the
respective models to have similar values. Continuing with the
previous example, in such a case of similarity of the sound
data, this sharing may be utilized to address sound data that is
noisy, has missing parts, and so on.

The sound data is then processed using at least one of the
jointly generated plurality of models (block 610). A variety of
different techniques may be employed that utilize a model of
sound data, such as sound decomposition as described above.
A variety of other examples are also contemplated.

Example System and Device

FIG. 7 illustrates an example system generally at 700 that
includes an example computing device 702 that is represen-
tative of one or more computing systems and/or devices that
may implement the various techniques described herein. This
is illustrated through inclusion of the sound processing mod-
ule 112, which may be configured to process sound data. The
computing device 702 may be, for example, a server of a
service provider, a device associated with a client (e.g., a
client device), an on-chip system, and/or any other suitable
computing device or computing system.

The example computing device 702 as illustrated includes
a processing system 704, one or more computer-readable
media 706, and one or more 1/O interface 708 that are com-
municatively coupled, one to another. Although not shown,
the computing device 702 may further include a system bus or
other data and command transfer system that couples the
various components, one to another. A system bus can include
any one or combination of different bus structures, such as a
memory bus or memory controller, a peripheral bus, a univer-
sal serial bus, and/or a processor or local bus that utilizes any
of a variety of bus architectures. A variety of other examples
are also contemplated, such as control and data lines.

The processing system 704 is representative of functional-
ity to perform one or more operations using hardware.
Accordingly, the processing system 704 is illustrated as
including hardware element 710 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 710 are not limited
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by the materials from which they are formed or the processing
mechanisms employed therein. For example, processors may
be comprised of semiconductor(s) and/or transistors (e.g.,
electronic integrated circuits (ICs)). In such a context, pro-
cessor-executable instructions may be electronically-execut-
able instructions.

The computer-readable storage media 706 is illustrated as
including memory/storage 712. The memory/storage 712
represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage com-
ponent 712 may include volatile media (such as random
access memory (RAM)) and/or nonvolatile media (such as
read only memory (ROM), Flash memory, optical disks, mag-
netic disks, and so forth). The memory/storage component
712 may include fixed media (e.g., RAM, ROM, a fixed hard
drive, and so on) as well as removable media (e.g., Flash
memory, a removable hard drive, an optical disc, and so
forth). The computer-readable media 706 may be configured
in a variety of other ways as further described below.

Input/output interface(s) 708 are representative of func-
tionality to allow a user to enter commands and information to
computing device 702, and also allow information to be pre-
sented to the user and/or other components or devices using
various input/output devices. Examples of input devices
include a keyboard, a cursor control device (e.g., a mouse), a
microphone, a scanner, touch functionality (e.g., capacitive or
other sensors that are configured to detect physical touch), a
camera (e.g., which may employ visible or non-visible wave-
lengths such as infrared frequencies to recognize movement
as gestures that do not involve touch), and so forth. Examples
of output devices include a display device (e.g., a monitor or
projector), speakers, a printer, a network card, tactile-re-
sponse device, and so forth. Thus, the computing device 702
may be configured in a variety of ways as further described
below to support user interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program modules.
Generally, such modules include routines, programs, objects,
elements, components, data structures, and so forth that per-
form particular tasks or implement particular abstract data
types. The terms “module,” “functionality,” and “component™
as used herein generally represent software, firmware, hard-
ware, or acombination thereof. The features of the techniques
described herein are platform-independent, meaning that the
techniques may be implemented on a variety of commercial
computing platforms having a variety of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 702. By way of example, and not limita-
tion, computer-readable media may include “computer-read-
able storage media” and “computer-readable signal media.”

“Computer-readable storage media” may refer to media
and/or devices that enable persistent and/or non-transitory
storage of information in contrast to mere signal transmis-
sion, carrier waves, or signals per se. Thus, computer-read-
able storage media refers to non-signal bearing media. The
computer-readable storage media includes hardware such as
volatile and non-volatile, removable and non-removable
media and/or storage devices implemented in a method or
technology suitable for storage of information such as com-
puter readable instructions, data structures, program mod-
ules, logic elements/circuits, or other data. Examples of com-
puter-readable storage media may include, but are not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
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optical storage, hard disks, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other storage device, tangible media, or article of manufac-
ture suitable to store the desired information and which may
be accessed by a computer.

“Computer-readable signal media” may refer to a signal-
bearing medium that is configured to transmit instructions to
the hardware of the computing device 702, such as via a
network. Signal media typically may embody computer read-
able instructions, data structures, program modules, or other
data in a modulated data signal, such as carrier waves, data
signals, or other transport mechanism. Signal media also
include any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media.

As previously described, hardware elements 710 and com-
puter-readable media 706 are representative of modules, pro-
grammable device logic and/or fixed device logic imple-
mented in a hardware form that may be employed in some
embodiments to implement at least some aspects of the tech-
niques described herein, such as to perform one or more
instructions. Hardware may include components of an inte-
grated circuit or on-chip system, an application-specific inte-
grated circuit (ASIC), a field-programmable gate array
(FPGA), a complex programmable logic device (CPLD), and
other implementations in silicon or other hardware. In this
context, hardware may operate as a processing device that
performs program tasks defined by instructions and/or logic
embodied by the hardware as well as a hardware utilized to
store instructions for execution, e.g., the computer-readable
storage media described previously.

Combinations of the foregoing may also be employed to
implement various techniques described herein. Accordingly,
software, hardware, or executable modules may be imple-
mented as one or more instructions and/or logic embodied on
some form of computer-readable storage media and/or by one
or more hardware elements 710. The computing device 702
may be configured to implement particular instructions and/
or functions corresponding to the software and/or hardware
modules. Accordingly, implementation of a module that is
executable by the computing device 702 as software may be
achieved at least partially in hardware, e.g., through use of
computer-readable storage media and/or hardware elements
710 of the processing system 704. The instructions and/or
functions may be executable/operable by one or more articles
of manufacture (for example, one or more computing devices
702 and/or processing systems 704) to implement techniques,
modules, and examples described herein.

The techniques described herein may be supported by vari-
ous configurations of the computing device 702 and are not
limited to the specific examples of the techniques described
herein. This functionality may also be implemented all or in
part through use of a distributed system, such as over a
“cloud” 714 via a platform 716 as described below.

The cloud 714 includes and/or is representative of a plat-
form 716 for resources 718. The platform 716 abstracts
underlying functionality of hardware (e.g., servers) and soft-
ware resources of the cloud 714. The resources 718 may
include applications and/or data that can be utilized while
computer processing is executed on servers that are remote
from the computing device 702. Resources 718 can also
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include services provided over the Internet and/or through a
subscriber network, such as a cellular or Wi-Fi network.

The platform 716 may abstract resources and functions to
connect the computing device 702 with other computing
devices. The platform 716 may also serve to abstract scaling
of resources to provide a corresponding level of scale to
encountered demand for the resources 718 that are imple-
mented via the platform 716. Accordingly, in an intercon-
nected device embodiment, implementation of functionality
described herein may be distributed throughout the system
700. For example, the functionality may be implemented in
part on the computing device 702 as well as via the platform
716 that abstracts the functionality of the cloud 714.

Conclusion

Although the invention has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as example forms of implementing the claimed invention.

What is claimed is:

1. A method implemented by one or more computing
devices, the method comprising:

obtaining sound data from a plurality of different record-

ings that correspond to a plurality of different sound
scenes;

jointly generating a plurality of models of sound data, each

of the models serving as a dictionary that represents

characteristics of a sound source included in at least one

of the plurality of different sound scenes, and the joint

generating including:

learning information as part of generating a first said
model of sound data from a first said recording of a
first said sound scene; and

sharing the learned information to generate a second
said model of sound data from a second said recording
of a second said sound scene; and

decomposing sound data using at least one of the jointly

generated plurality of models and without using training
data.

2. A method as described in claim 1, wherein the informa-
tion includes basis vectors.

3. A method as described in claim 1, wherein the sound data
is similar in that each of the plurality of sound scenes includes
at least a common sound source.

4. A method as described in claim 1, wherein the sound data
is similar in that each of the plurality of sound scenes includes
a common type of sound source.

5. A method as described in claim 4, wherein the types of
sound source include speech, musical instrument, or type of
noise.

6. A method as described in claim 1, wherein each of the
models is generated based on non-negative matrix factoriza-
tion (NMF) or latent component analysis.

7. A method as described in claim 1, further comprising
generating the second said model using the shared learned
information as a basis to form a penalty term that encourages
the first and second said models to include relatively close
values for spectral components of the models.

8. A method as described in claim 1, further comprising

learning corres ondences between the models of sound data

using multitask dictionary learning; and

swapping basis vectors of a first sound source with basis

vectors of a second sound source based on the learned
correspondences to impart the characteristics of the sec-
ond sound source on the first sound source.
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9. A method as described in claim 1, wherein the decom-
posing is performed according to one or more sound decom-
position techniques.

10. A method as described in claim 1, wherein the decom-
posing is performed to support audio denoising, music tran-
scription music remixing, or audio-based forensics.

11. A system comprising:

one or more modules implemented at least partially in

hardware and configured to jointly generate a plurality
of individual models for respective ones of a plurality of
sound data by sharing information during the generating
to utilize a penalty that encourages spectral components
of the respective said models to have similar values, an
individual model serving as a dictionary that represents
characteristics of a sound source included in at least one
of a plurality of sound scenes that correspond to the
plurality of sound data; and

at least one module implemented at least partially in hard-

ware and configured to decompose sound data using at
least one of the jointly generated plurality of models and
without using training data.

12. A system as described in claim 11, wherein the shared
information includes basis vectors.

13. A system as described in claim 11, wherein the sound
data is similar in that each of the plurality of sound scenes
includes at least a common sound source or includes a com-
mon type of sound.

14. A system as described in claim 11, wherein the at least
one module is configured to decompose the sound data using
one or more sound decomposition techniques.

15. One or more computer readable storage media com-
prising instructions stored thereon that, responsive to execu-
tion by a computing device, causes the computing device to
perform operations comprising:

jointly generating a plurality of individual models for

respective ones of a plurality of sound data by sharing
information learned during the generating from a plural-
ity of recordings that correspond the plurality of sound
data, the information shared to utilize a penalty that
encourages spectral components of the respective said
models to have similar values; and

decomposing sound data using at least one of the jointly

generated plurality of models and without using training
data.

16. One or more computer readable storage media as
described in claim 15, wherein the shared information
includes basis vectors.

17. One or more computer readable storage media as
described in claim 15, wherein the sound data is similar in that
each of the plurality of sound scenes includes at least a com-
mon sound source.

18. One or more computer readable storage media as
described in claim 15, wherein the sound data is similar in that
each of a plurality of sound scenes that correspond to the
plurality of recordings, respectively, includes a common type
of sound.

19. One or more computer readable storage media as
described in claim 15, wherein each of the models is gener-
ated based on non-negative matrix factorization (NMF) or
latent component analysis.

20. One or more computer readable storage media as
described in claim 15, wherein each of the models is gener-
ated based on singular value decomposition (SVD).

#* #* #* #* #*
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